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Prescribing curvature to spherical helicoidal surfaces
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We deal with helicoidal surfaces in the unit 3-sphere S3, i.e. surfaces invariant under the action
of the helicoidal 1-parameter group of isometries given by the composition of a translation and
a rotation in S3. This class includes the rotational ones. Spherical helicoidal flat surfaces were
studied in [3]. We introduce the notion of spherical angular momentum of the generatrix curve
of the helicoidal surface. It will play a key role since determines the geometry of the helicoidal
surface joint to its pitch. Then, inspired by [1], we show that if we prescribe the mean curvature
of a spherical helicoidal surface in terms of a function depending on the distance to its axis, we
get a one parameter family of helicoidal surfaces with this prescribed mean curvature. As a first
application, we identify the minimal spherical surfaces that play the role of classical catenoids
and helicoids and describe all the minimal helicoidal surfaces in S3, proving that they are the
associated surfaces ([2]) to them.
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Rigging technique on null hypersurfaces of indefinite Kaehler manifolds
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We study null hypersurfaces of indefinite Kaehler manifolds and by taking the advantages of
the almost complex structure J , we select a suitable rigging ζ, call it as the J−rigging, on the
null hypersurface. This suitable rigging enables us to build an associated Hermitian metric ğ on
the ambient space and which is restricted into a non-degenerated metric g̃ on the normalized
null hypersurface (M, ζ). We derive Gauss-Weingarten type formulae for null hypersurface M
of an indefinite Kaehler manifold M with a fixed closed Killing J-rigging for M . Later, we
establish some relations linking the curvatures, holomorphic sectional curvatures, null sectional
curvatures, Ricci curvatures, scalar curvatures etc. of the ambient manifold and normalized null
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hypersurface (M, ζ). We also provide condition for the null hypersurface to be a locally product
manifold.
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First natural connection on almost paracontact
almost paracomplex Riemannian manifolds
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The first natural connection on almost paracontact almost paracomplex Riemannian manifolds
is constructed. The object of the considerations are the main classes of the considered manifolds
in which the fundamental tensor is expressed explicitly. It is obtained a relation between the
studied natural connection and the Levi-Civita connection in each of these classes as well as the
dependences between their respective curvature characteristics.
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The object of our study is geometry of the so-called almost paracontact almost paracomplex
Riemannian manifolds (M, f, ξ, η, g). This means that M is an odd-dimensional real differ-
entiable manifold, (f, ξ, η) is an almost paracontact structure and g is a Riemannian metric.
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Furthermore, the restriction of the almost paracontact structure on the paracontact distribu-
tion H = ker(η) is an almost paracomplex structure, i.e. a traceless product structure. The
more popular case is when the compatible metric g with the almost paracontact structure is
Riemannian, although the metric can be also indefinite.

An object of particular interest in our research is the case of the lowest dimension (which is
three) of manifolds under study.

In the present work, we use two different approaches to construct an almost paracontact
almost paracomplex Riemannian manifold on a hypersphere. The first case is of a hypersphere
in Euclidean space E4 and the second is of a time-like hypersphere in pseudo-Euclidean space
E4

1 (i.e. Minkowski space).
The purpose of this work is to study the basic geometric characteristics of the considered

manifolds. The constructed manifolds are characterised with respect to their curvature proper-
ties. The obtained results provide explicit examples of the lowest dimension of the manifolds
under study and will contribute to the understanding of their geometry.

Wintgen inequality for Kulkarni curvature tensor
satisfying algebraic Gauss equation and its applications
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In 1979, P. Wintgen [6] proved an inequality for a surface M2 in R4, namely

K ≤ ‖H‖2 −
∣∣∣K⊥

∣∣∣ ,

where K is the Gauss curvature, ‖H‖2 is the squared mean curvature and K⊥ the normal
curvature. The equality holds if and only if the ellipse of curvature of M2 in E4 is a circle.
Later, for surfaces M2 of any codimension m ≥ 2 in real space forms M̃2+m(c), B. Rouxel
(1981) and I.V. Guadalupe and L. Rodriguez (1983) independently gave an extension of the
Wintgen inequality as

K ≤ ‖H‖2 −K⊥ + c.

In 1999, the above Wintgen inequality was conjectured by De Smet, Dillen, Verstraelen and
Vrancken [2] for submanifolds in real space forms, now known as the DDVV conjecture. The
DDVV conjecture was proved by Lu (2011) [5] and by Ge and Tang (2008) [3], independently.
Now, corresponding inequalities have drawn interest of many geometers and they proved similar
inequalities in different situations.

In this presentation, Wintgen inequality for a Kulkarni curvature tensor satisfying algebraic
Gauss equation will be given as follows:

Theorem. Let (M, g) be an n-dimensional Riemannian manifold and (B, gB) an m-dimensional
Riemannian vector bundle over M with n, m ≥ 2. Let ζ be a B-valued symmetric (1, 2)-tensor
field and T a Kulkarni curvature tensor [4] on M satisfying the algebraic Gauss equation [1,
Chen, Dillen, and Verstraelen 2005]

T (X, Y, Z,W ) = gB (ζ (X, W ) , ζ (Y, Z))− gB (ζ (X, Z) , ζ (Y, W )) .
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Then, normalized T -scalar curvature τT
nor and normalized Wintgen curvature 0

ζ
nor of ζ satisfy

(1) τT
nor ≤

1
n2
‖trace ζ‖2 − 0

ζ
nor.

The equality case of (1) is satisfied identically if and only if, with respect to a suitable orthonor-
mal frame {e1, . . . , en} on M and an orthonormal frame {e⊥n+1, . . . , e

⊥
n+m} of the Riemannian

vector bundle (B, gB), the matrices
(
ζr
ij

)
take the forms

(
ζn+1
ij

)
=


a1 + b 0 0 · · · 0

0 a1 − b 0 · · · 0
0 0 a1 · · · 0
...

...
...

. . .
...

0 0 0 · · · a1

 ,

(
ζn+2
ij

)
=


a2 b 0 · · · 0
b a2 0 · · · 0
0 0 a2 · · · 0
...

...
...

. . .
...

0 0 0 · · · a2

 ,

(
ζn+3
ij

)
= a3In,(

ζr
ij

)
= 0n, r ∈ {n + 4, . . . , n + m} ,

where a1, a2, a3 and b are real functions on M .

It will be explained that, applying this result a number of results can be obtained for subman-
ifolds of Riemannian manifolds, real space forms, complex space forms, Sasakian space forms,
quaternion space forms etc.
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Riemannian submersions with differential geometry of certain curves
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We study the concept of Riemaniann submersions defined between Riemannian manifolds
by aid of certain curves. We firstly get a relation between curvatures of general Frenet curves
lies on base manifold and corresponding Frenet curve on target manifold. Then, we present
characterizations of Riemannian submersions when the corresponding curves of general Frenet
curve on the total manifold have special properties. Also, we obtain certain differential equations
involving elements of Riemannian submersions when a geodesic, a circle or a helix in the total
manifold is transformed to a geodesic, circle or helix in the target manifold.
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We investigate a characterization of submanifolds of Riemannian manifolds by means of hy-
perelastic curves. For this purpose, we consider hyperelastic and elastic curves under isometric
immersions. We obtain this characterization of the submanifold by aid of the mean curvature
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vector field H. Finally, we give some results for a Riemannian manifold with constant sectional
curvature.
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Nilmanifolds and totally geodesic subalgebras of nilpotent metric Lie algebras

Ágota Figula

Department of Geometry, Institute of Mathematics, University of Debrecen

Let g be a Lie algebra and G be the corresponding connected and simply connected Lie group.
A metric Lie algebra (g, 〈., .〉) is a Lie algebra g together with a Euclidean inner product 〈., .〉 on
g. This inner product on g induces a left invariant Riemannian metric on the Lie group G. If
(n, 〈., .〉) is a nilpotent metric Lie algebra, then the corresponding nilpotent Lie group N endowed
with the left-invariant metric arising from 〈., .〉 is a Riemannian nilmanifold. The isometry group
of Riemannian nilmanifolds and the totally geodesic subalgebras of metric nilpotent Lie algebras
are popular subjects for investigations (cf. [2], [3], [5], [6], [7], [8]).

In this talk I would like to discuss the classification of the isometry equivalence classes and
the isometry groups of Riemannian nilmanifolds on all five dimensional simply connected non
two-step nilpotent Lie groups and on all simply connected standard filiform Lie groups. This
result is obtained in [4]. In this classification the metric Lie algebras which possess an orthogonal
direct sum decomposition into one-dimensional subspaces play an important role. We wish to
determine geodesics and flat totally geodesic subalgebras in 5-dimensional nilpotent metric Lie
algebras of step > 2. This result is presented in [1]. We obtained that in the non-filiform metric
Lie algebras with 1-dimensional centre the geodesic vectors and flat totally geodesic subalgebras
do not depend on the choice of the inner product.
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On the structure of topological loops with solvable multiplication groups
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A set L with a binary operation (x, y) 7→ x · y : L× L → L is called a loop if there exists an
element e ∈ L such that x = e·x = x·e holds for all x ∈ L and the equations a·y = b and x·a = b
have precisely one solution, which we denote by y = a\b and x = b/a. A loop L is proper if it is
not a group. The left and right translations λa = y 7→ a · y : L → L and ρa : y 7→ y · a : L → L,
a ∈ L, are permutations of L. The permutation group Mult(L) = 〈λa, ρa; a ∈ L〉 is called the
multiplication group of L. The stabilizer of the identity element e ∈ L in Mult(L) is called the
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inner mapping group Inn(L) of L. T. Kepka and M. Niemenmaa gave a purely group theoretical
criterion for a group K to be the group Mult(L) of a loop L (cf. [2]): A group K is isomorphic
to the multiplication group of a loop L if and only if there exist a subgroup S such that the core
of S in K is trivial and left transversals A, B to S in K such that for every a ∈ A and b ∈ B
one has a−1b−1ab ∈ S and K is generated by A ∪ B. In this case the subgroup S is the group
Inn(L) of L and the transversals A and B correspond to the sets of left and right translations
of L, respectively.

A loop L is called topological if L is a topological space, the binary operations (x, y) 7→ x ·
y, (x, y) 7→ x\y, (x, y) 7→ y/x : L×L → L are continuous. There is a bijection between connected
topological loops L having a Lie group G topologically generated by the left translations of L
and the triples (G, H, σ), where G is a connected Lie group, H is a closed subgroup of G such
that the core of H in G is trivial and σ : G/H → G is a continuous sharply transitive section
such that σ(H) = 1 ∈ G and the set σ(G/H) generates G. A section σ : G/H → G is called
sharply transitive, if the set σ(G/H) operates sharply transitively on G/H, i.e. for any xH
and yH there exists precisely one z ∈ σ(G/H) with zxH = yH. The loop L is defined on the
homogeneous space G/H with the multiplication xH · yH = σ(xH)yH (cf. [1]).

In this talk we wish to describe the structure of the solvable Lie groups which are the mul-
tiplication groups Mult(L) for three-dimensional connected topological loops L. In particular
we find that the solvability of the multiplication group Mult(L) of L forces that L is classically
solvable. Moreover, L is congruence solvable if and only if either L has a non-discrete centre or
L is an abelian extension of a normal subgroup R by the 2-dimensional non-abelian Lie group
or by an elementary filiform loop. We determine the solvable Lie groups of dimension ≤ 6 which
occur as the groups Mult(L) for three-dimensional loops L and we show that these loops are
centrally nilpotent of class 2.
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Branched covering surfaces - new shapes, new materials and new processes
Konrad Polthier

Freie University Berlin, Germany

The classic geometric view on smooth surfaces hardly fits to the complex and often multiscale
physical surface shapes in nature and, nowadays, in industrial applications.

In this talk we will introduce a new class of multi-layered surface shapes derived from recent
algorithms in geometry processing and related to classic complex analysis. Multivalued functions
and differential forms naturally lead to the concept of branched covering surfaces and more
generally of branched covering manifolds in the spirit of Hermann Weyl’s book ”The Idea of
a Riemann Surface ” from 1913. We will illustrate and discretize basic concepts of branched
(simplicial) covering surfaces starting from complex analysis and surface theory up to their
recent appearance in geometry processing algorithms and artistic mathematical designs.

Applications will touch discrete and differential surface modeling, image and geometry retar-
geting, optimal surfaces, and novel weaved geometry representations.
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Simon’s type formulas in the geometry of statistical structures
Barbara Opozda

Faculty of Mathematics and Computer Sciences UJ, ul.  Lojasiewicza 6, 30-348 Cracow, Poland
barbara.opozda@im.uj.edu.pl

Let A be the cubic form of a statistical structure and τ its Tchebychev form. We present some
inequalities including ‖A‖, ‖τ‖ and some formulas (of Simons’ type) for the Laplacian of the
function ‖A‖2. Using them and also a maximum principle, one can prove local as well as global
theorems on conjugate symmetric statistical structures. We put the emphasis on differences
between the case of statistical structures on affine hypersurfaces, the one of statistical structures
on Lagrangian sumbanifolds and the general case of statistical manifolds.

Wintgen inequality for surfaces in Hessian manifolds
Leila Samereh1 and Ion Mihai2

1Department of Mathematics, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
2Department of Mathematics, University of Bucharest, 010014 Bucharest, Romania

l-samereh@phd.araku.ac.ir, imihai@fmi.unibuc.ro

The inequality of Wintgen is a sharp geometric inequality involving the Gauss curvature (in-
trinsic invariant) and the normal cur- vature and squared mean curvature (extrinsic invariants),
respectively, for surfaces in the 4-dimensional Euclidean space.
In the present paper we obtain a Wintgen inequality for statistical surfaces in 4-dimensional
Hessian manifolds of constant Hessian curva- ture.
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Let (M, g,∇(λ)) be a statistical manifold. We get the Levi-Civita connectione CG∇̂ of TM
equipped with the Cheeger-Gromoll metric CGg. We calculate components of the curvature
tensor CGR̂(λ) of the Levi-Civita connection CG∇̂(λ) with the Cheeger Gromoll metric CGg on
the tangent bundle TM . Several illustrative examples are provided, as well.
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Curvature Invariants for Statistical Submanifolds
Simona Decu (Marinescu)

Department of Applied Mathematics, Bucharest University of Economic Studies, Bucharest, Romania

We obtain optimal inequalities involving the scalar curvature (intrinsic invariant) and the δ-
Casorati curvatures (extrinsic invariants) of a statistical submanifold in holomorphic statistical
manifolds with constant holomorphic sectional curvature. We investigate the Casorati ideal
submanifolds which characterise the totally geodesic submanifolds with respect to the Levi-
Civita connection.

References

[1] M. Aydin, A. Mihai, I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature,
Filomat 29 (2015),465–477.

[2] B.Y. Chen, Pseudo-Riemannian Geometry, δ-Invariants and Applications; World Scientific: Singapore, 2011.
[3] S. Decu, S. Haesen, L. Verstraelen, Inequalities for the Casorati Curvature of Statistical Manifolds in Holo-

morphic Statistical Manifolds of Constant Holomorphic Curvature, Mathematics, 8 (2020).
[4] H. Furuhata, I. Hasegawa, Submanifold theory in holomorphic statistical manifolds. In Geometry of Cauchy-

Riemann Submanifolds; S. Dragomir, M.H. Shahid, F.R Al-Solamy, Eds.; Springer Science+Business Media
Singapore: Singapore, 2016; pp. 179–214.

[5] M. Milijevic, Totally real statistical submanifolds, Interdiscip. Inform. Sci. 21 (2015), 87–96.
[6] L. Verstraelen, Geometry of submanifolds I. The first Casorati curvature indicatrices, Kragujevac J. Math.

37 (2013),5–23.
[7] G. Vilcu, An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati

curvature, J. Math. Anal. Appl. 465 (2018),1209–1222.

A class of affine hypersurfaces with constant sectional curvature
Miroslava Antić1, Haizhong Li2, Luc Vrancken3, Xianfeng Wang4

1Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
2Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China

3 LMI, Université Polytechnique Hauts-de-France, 59313 Valenciennes, France;
Department of Mathematics, KU Leuven, 3001 Leuven, Belgium

4School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, P. R. China

We study affine locally strongly convex hypersurfaces with constant sectional curvature in
the affine space Rn+1. By using the Tsinghua principle, i.e. by making full use of the Codazzi
equations for both the shape operator S and the difference tensor K and the Ricci identity in
an indirect way, we prove a nice relation involving the eigenvalues of the shape operator and the
difference tensor of the affine hypersurface. Starting from this relation, we give a classification
of locally strongly convex hypersurface with constant sectional curvature whose shape operator
S has at most one eigenvalue of multiplicity one.



11

Chen inequality for statistical submanifolds
in statistical manifolds of constant curvature

Hülya Aytimur

Department of Mathematics, Balikesir University, Turkey

We obtain Chen first inequality and a Chen inequality for the δ(2, 2)-invariant of a statistical
submanifold in statistical manifolds of constant curvature.
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Applications of the Tsinghua principle
Luc Vrancken

Université de Valenciennes, France; K.U. Leuven, Belgium

In submanifold geometry one studies properties of a submanifold M of N which are invariant
under a group of transformations of N . It originates with the study of curves in R2 and surfaces
in R3 which are invariant under euclidean transformations (isometries of Rn). Later one can
either look at more general ambiant spaces (provided that they have sufficiently many isometries)
or look at a more general class of transformations (which is for example done in affine differential
geometry)

The ambiant spaces which we will consider in this talk are
• the real space forms
• the complex projective space (or complex space forms)
• the complex quadric
• the complex hyperbolic quadric
• the nearly Kaehler S3 × S3

• hypersurfaces of Rn+1 with respect to the group of equiaffine transformations of Rn+1.
For all of these spaces there is an explicit expression for the curvature tensor and so if one

studies submanifolds of these spaces there exist as seen in any book on Riemannian geometry:
• the equation of Gauss
• the equation of Codazzi
• the equation of Ricci

together with some additional equations depending on the geometry of the ambiant space.
The questions we want to consider during this lecture is:
How does the geometry ( in particular the curvature) of the submanifold deter-

mine the immersion ( i.e. the way it looks in the ambiant space)
One would expect that for doing so the Gauss equation

< R(X, Y )Z,W >=< R̃(X, Y )Z,W > + < h(Y, Z), h(X, W ) > − < h(X, Z), h(Y, W ) >

to be a good starting point. For some questions this is indeed the case. But as this equation
is nonlinear (quadratic) in the components of the second fundamental form it is not always a
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good starting point. For some of those questions the Tsinghua principle used by Li Haizhong,
Luc Vrancken and Wang Xianfeng in 2013 at Tsinghua University is a good starting point.

However, just is true for the Gauss equation, it can not be applied for just any problem. It is
necessary:

• to have an explicit expression for the curvature tensor of the submanifold
• to have a tangential version of the Codazzi equation

REFERENCES
M. Antic, J. Van der Veken, L. Vrancken, Differential Geometry of Submanifolds: Submani-

folds of Almost Complex Spaces and Almost Product Spaces, De Gruyter Studies in Mathematics.

Surfaces with constant curvature in Euclidean space:
old problems and new results

Rafael López

Department of Geometry and Topology, University of Granada, Spain

Surfaces with constant Gauss curvature and constant mean curvature play a central role in
classical differential geometry of Euclidean space R3. In order to find explicit examples of such
surfaces, it is natural to impose some geometric property on the surface, such for instance,
that the surface is rotational or that is ruled. This idea appears already at the beginning of
the classical theory: it is enough to mention works of Euler, Meusnier, Scherk, Schwarz and
Riemann. In this talk, we address two techniques that were developed in the XIXth century
and that have been, in part, forgotten over in the course of time.

A first class of surfaces are the translation surfaces, which are surfaces can be locally written as
the sum of two space curves. We classify all translations surfaces with constant Gauss curvature.
In case of minimal translation surfaces, we give a procedure to find many examples.

The second family of surfaces are those ones that can be expressed by separation of variables
f(x) + g(y) + h(z) = 0. We give a full classification of separable surfaces with constant Gauss-
ian curvature and if the mean curvature is a non-zero constant, we prove that the surface is
rotational.
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Spacetimes with different forms of energy momentum tensor
Uday Chand De

Emeritus Professor (Retd.)
Department of Pure Mathematics, University of Calcutta

35, Ballygunge Circular Road, Kolkata 700019, West Bengal, INDIA
uc de@yahoo.com

The object of the present talk is to characterize spacetimes with different types of energy
momentum tensor. At first we consider spacetimes with pseudo symmetric energy momentum
tensor T. We obtain a necessary and sufficient condition for a spacetime with pseudo symmetric
energy momentum tensor to be a pseudo Ricci symmetric spacetime. Next we consider the
spacetimes with Codazzi type of energy momentum tensor and several interesting results are
pointed out. Moreover, some results related to perfect fluid spacetimes with different forms of
energy momentum tensors have been obtained. We study spacetimes with quadratic Killing
energy momentum tensor T and show that a GRW spacetime with quadratic Killing energy mo-
mentum tensor is an Einstein space. Finally, we have considered general relativistic spacetimes
with semisymmetric energy momentum tensor and obtained some important results.

Key Words: Perfect fluid spacetimes; Einsteins field equation; energy momentum tensor;
Codazzi type tensor; GRW spacetimes.

Fractional invariants of curves in Euclidean spaces of higher dimension
Meltem Ogrenmis1 and Mehmet Bektas2

1Department of Mathematics, Firat University, Turkey
2Department of Mathematics, Firat University, Turkey

Yajima, et al. [2] introduced the notion of curvature with fractional order for a given Euclidean
plane curve, illustrating examples with prescribed curvature. This approach was performed in
a Euclidean space of dimension 3 by Aydin et al. [1] and the notions of curvature and torsion
with fractional order were defined. The main purpose of this talk is to generalize in Euclidean
spaces of higher dimension the mentioned objects.
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A new approach on singular minimal surfaces in 3-spaces
Muhittin Evren Aydin

Department of Mathematics, Firat University, Turkey

This talk is based on jointly works with Ayla Erdur and Mahmut Ergut (Department of Math-
ematics, Namik Kemal University, Tekirdag, Turkey). The singular minimal surfaces named by
Dierkes are those surfaces minimizing energy while the minimal surfaces are the ones minimizing
area (locally). We approach the surfaces in the Euclidean 3-space which belong to intersecting of
the sets of singular minimal and minimal surfaces. Since those surfaces are indeed nothing but a
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plane, we modify the usual condition of singular minimality by using a certain semi-symmetric
metric connection. With this connection, we observe that the singular minimal surfaces which
are minimal are the cylindrical translating solitons which are solutions to the mean curvature
flow equation for the special variation given by a subgroup of the translations. Our approach is
also performed in the Lorentz-Minkowski 3-space.
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Slant submanifolds in generalized Sasakian space forms
satisfying a natural equality

Pablo Alegre1, Joaqúın Barrera2 and Alfonso Carriazo3

1Departamento de Economı́a, Métodos Cuantitativos e Historia Económica,
Área de Estad́ıstica e Investigación Operativa, Universidad Pablo de Olavide, Spain

2Servicio de Planes de Formación. Dirección General de Formación del Profesorado e
Innovación Educativa, Consejeŕıa de Educación y Deporte. Junta de Andalućıa, Spain

3Departamento de Geometŕıa y Topoloǵıa, Facultad de Matemáticas, Universidad de Sevilla, Spain

In this talk we will focus on slant submanifolds whose second fundamental forms satisfy the
equality cases of natural inequalities between their mean curvatures and their scalar curvatures.
We will give several interesting examples of these submanifolds, as well as lower and upper
bounds for their Ricci curvatures. Moreover, we will also present an adapted closed form for
slant submanifolds of generalized Sasakian space forms, similar to the Maslov form, and we will
study under which circumstances the given closed form is also conformal. Our results have been
recently published in [1] and [2].
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Covariant and Lie derivatives on real hypersurfaces
in complex projective space

Juan de Dios Pérez1 and David Pérez-López2

1Departamento de Geometŕıa y Topoloǵıa and
IEMATH, Universidad de Granada, 18071 Granada, Spain

2Departamento de Geometŕıa y Topoloǵıa, Universidad de Granada, 18071 Granada, Spain

Let M be a real hypersurface in complex projective space CPm. The Khler structure (J, g) of
CPm induces on M an almost contact metric structure (φ, ξ, η, g). This structure allows us to
define, for any nonnull real number k, the so called k-th generalized Tanaka-Webster connection
∇̂(k) on M by ∇̂(k)

X Y − ∇XY = F
(k)
X Y = g(φAX, Y )ξ − η(Y )φAX − kη(X)φY , for any X, Y

tangent to M where A is the shape operator on M . The torsion of such a connection is given by
T (k)(X, Y ) = T

(k)
X Y = F

(k)
X Y − F

(k)
Y X. If L denotes the Lie derivative on M we can also define

a differential operator of first order L(k) on M by L(k)
X Y − LXY = T

(k)
X Y .

If K es a tensor field of type (1,1) on M we can define two tensor fields of type (1,2) on M for
any nonnull real number k: K

(k)
F (X, Y ) = [F (k)

X ,K]Y and K
(k)
T (X, Y ) = [T (k)

X ,K]Y . During the
last five years we have classified real hypersurfaces in CPm whose corresponding tensors for the
shape operator, the structure Jacobi operator Rξ or the Lie structure operator Lξ = φA − Aφ
vanish. Here we introduce new classification theorems for such tensors to be symmetric or
skew-symmetric.
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Trans-S-manifolds and their Legendre curves satisfying certain conditions

Şaban Güvenç

Balikesir University, Department of Mathematics, Balikesir, Turkey

In this talk, we consider trans-S-manifolds and define their Legendre curves as in the case
of S-manifolds. We find Frenet frame fields and curvatures of these Legendre curves in order
to satisfy ∇T T = −qfT , where ∇ is the Levi-Civita connection, q is a non-zero constant, T is
the unit tangential vector field of the curve and f is the (1, 1)−type tensor field of the trans-S-
manifold. We also investigate conditions for these curves to have C-parallel or C-proper mean
curvature vector field in the tangent and normal bundle.
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On some properties of quasi-Einstein sequential warped product manifolds

Fatma Karaca1 and Cihan Özgür2

1 Department of Mathematics, Beykent University, İstanbul, Turkey
2 Department of Mathematics, Balıkesir University, Balıkesir, Turkey

The sequential warped product manifold is the triple product manifold M = (M1 ×f M2)×h

M3 equipped with the metric tensor

g = g1 ⊕ f2g2 ⊕ h2g3,

where f : M1 → (0,∞) and h : M1 × M2 → (0,∞) are warping functions [2]. It is known
that a (semi)-Riemannian manifold of quasi-constant curvature is a quasi-Einstein manifold
[1]. In this study, we consider quasi-Einstein sequential warped product manifolds. We find
the main relations for a sequential warped product manifold to be a quasi-Einstein manifold.
We obtain the necessary and sufficient conditions for a sequential standard static space-time
and a sequential generalized Robertson-Walker space-time to be a manifold of quasi-constant
curvature.
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When a vector field is a magnetic map?

Marian Ioan Munteanu

Alexandru Ioan Cuza University of Iasi, Department of Mathematics,
Bd. Carol I, no. 11, Iasi, 700506, Romania,

marian.ioan.munteanu@gmail.com

This talk is based on some joint papers with J. Inoguchi from the Institute of Mathematics,
University of Tsukuba, Japan.

In our paper [1] we define the notion of magnetic map as a generalization of both magnetic
curves and harmonic maps. As a vector field can be thought of as a map from the manifold to
its tangent bundle and since the tangent bundle carries a natural magnetic field obtained from
its almost Kählerian structure, we may ask when a vector field is a magnetic map?
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Furthermore, we show that a unit vector field on an oriented Riemannian manifold is a critical
point of the Landau Hall functional if and only if it is a critical point of the Dirichlet energy
functional. Therefore, we provide a characterization for a unit vector field to be a magnetic map
into its unit tangent sphere bundle.
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Comparison principle, duality, and harmonicity -
comparing diverse phenomena and discovering secret unity

Shihshu Walter Wei

Department of Mathematics, University of Oklahoma, Norman OK 73019, U. S. A.

Duality is a special type of symmetry that involves with ”polar opposites” and their dynam-
ical interplays. The two are not merely opposites. The more we learn about human striving,
the more we see they are supplementary, complementary, integrative and inextricably bound
together. Duality is very elegant, yet powerful and has a long and distinguished history going
back thousands of years. It is a natural and precious phenomenon that permeates or occurs in
practically all branches of mathematics, physics, engineering, logic, psychology, real life, food
science, social sciences, natural sciences, medical sciences such as alternative or energy medicine,
acupuncture, meditation, qigong, physical therapy, nutrition therapy, etc (cf. [W2]).

Comparing diverse phenomena and discovering secret unity, we will discuss comparison theo-
rems in differential equations and in differential geometry and the transitions between these two
fields with applications in physics and bundle-valued generalized harmonic forms on noncompact
manifolds in real, complex, and Finsler geometry from the viewpoint of dualities.

References

[W1] S. W. Wei, Growth Estimates for Generalized Harmonic Forms on Noncompact Manifolds with Geometric
Applications, Geometry of Submanifolds, 247-269, Contemp. Math., 756, Amer. Math. Soc., Providence, RI,
(2020).

[WW] S.W. Wei and B.Y. Wu, Generalized Hardy type and Caffarelli-Kohn-Nirenberg type inequalities on Finsler
manifolds, to appear in Internat. J. Math. 31 (2020), no. 13, 2050109, 27 pp.

[W2] S. W. Wei, Dualities in Comparison Theorems and Bundle-Valued Generalized Harmonic Forms, to appear
in SCI. CHINA Math., 59 pp.



18

Ideas for a new generation of problems in mathematical chemistry

Fănică Cimpoeşu1 and Adela Mihai2

1Institute of Physical Chemistry ”Ilie Murgulescu” of the Romanian Academy
2Technical University of Civil Engineering Bucharest

cfanica@yahoo.com, adela.mihai@utcb.ro

The term mathematical chemistry is nowadays mostly associated with applications of graph
theory in topological issues of 3D chemical structures, thought as collection of atoms as dots and
bonds as lines. We propose here new issues coming from the side of nowadays computational
chemistry, which implies application of quantum physics to concrete problems. For instance,
possible challenges can be found in examining, with ancillary tools of state-of-the art geometry,
the so-called potential energy surfaces of certain specific molecular structure prototypes.
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On the existence of convex functions on non-compact Finsler manifolds

Sorin V. Sabau

Department of Biological Sciences, Tokai University, Sapporo Campus, Japan

We show that a non-compact (forward) complete Finsler manifold whose Holmes-Thompson
volume is finite admits no non-trivial convex functions. We apply this result to some Finsler
manifolds whose Busemann function is convex.
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Cosmological Finsler spacetimes

Nicoleta Voicu

Transilvania University of Braşov, Romania

This is a joint work with Manuel Hohmann and Christian Pfeifer.
Applying the cosmological principle to Finsler spacetimes, we identify the Lie algebra of sym-

metry generators of spatially homogeneous and isotropic Finsler geometries, thus generalizing
Friedmann-Lemâıtre-Robertson-Walker geometry. In particular, we determine the most general
spatially homogeneous and isotropic Berwald spacetimes, which are Finsler spacetimes that can
be regarded as closest to pseudo-Riemannian geometry.
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Hom-symmetric spaces and Hom-Jordan Hom-symmetric spaces

Sami Chouaibi1 and Esmaeil Peyghan2

1Department of Mathematics, Faculty of Sciences, Sfax University, Sfax, Tunisia
2 Department of Mathematics, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran

In this paper, we introduce and study the notions of Hom-reflection space and Hom-symmetric
space. We provide some examples of Hom-reflection space (resp. Hom-symmetric space) by
using ordinary reflection (resp. symmetric) spaces. Also, we associate a Hom-reflection (resp.
Hom-symmetric) space to a Hom-Lie group. Finally, before showing that there is a relationship
between Hom-Jordan algebras and Hom-symmetric spaces, we first provide some properties of
a Hom-Jordan algebra.

Finding geodesics on surfaces using Taylor expansion of exponential map

Esa Sharahi

Arak University, Iran

Our aim is to construct a numerical algorithm using Taylor expansion of exponential map to
find geodesic joining two points on a 2-dimensional surface for which a Riemannian metric is
defined. This approach is generic and can be emulated in path finding for some problems that
a cost function is defined.

Keywords: Euclidean space, exponential map, geodesic, navigation problem, Riemannian
manifold, Taylor expansion.

On the geometry of a Randers cylinder

Rattanasak Hama1 and Sorin V. Sabau2

1Prince of Songkla University, Surat Thani Campus, Thailand
2Tokai University, Sapporo Campus, Japan

We will present some results from the geometry of a Randers cylinder of revolution. The
cylinder of revolution, in the Riemannian case, was studied by P. Chitsakul [1], [2]. On the
other hand, Randers rotational metrics, constructed from the Zermelo’s navigation process by
the navigation data W = (0, B), where B is constant, on surfaces of revolution homeomorphic
to R2 and S2, were studied in [3] and [4], respectively. In the present talk we will consider
Randers metric obtained from the navigation data (h, W ), where W = (A,B), where A,B are
constants, on a surface of revolution homeomorphic to a cylinder.
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Ricci soliton equation with applications to Zener schematics

Veturia Chiroiu1, Ligia Munteanu1 and Polidor Bratu1,2

1Department of Deformable Media and Ultrasonics,
Institute of Solid Mechanics of Romanian Academy, Bucharest

2Research Institute for Construction Equipment and Technologies (ICECON), Bucharest

A smooth vector field on a Riemannian manifold is a Ricci soliton if it satisfies the Ricci
soliton equation. The Ricci solitons are obtained in this paper by the cnoidal theory as fixed
points of the Ricci flow projected from the metrics space to its diffeomorphisms. Ricci solitons
via the Bäcklund transformation associated to the pseudospherical reduction of the rheological
Zener schematics are also reported.
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Ricci-like solitons with arbitrary potential and gradient almost Ricci-like
solitons on Sasaki-like almost contact B-metric manifolds

Mancho Manev
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and
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In [1], the author introduced and began the study of a generalization of Ricci soliton that is
compatible with the almost contact B-metric structure and its potential is the Reeb vector field
ξ. There, these objects are studied on some important kinds of manifolds under consideration:
Einstein-like, Sasaki-like and having a torse-forming potential ξ. The notions Einstein-like and
Sasaki-like are defined as generalizations of their classic counterparts using all available metric
tensors g, g̃ and η ⊗ η. Then, explicit examples of Lie groups with the studied structure in
dimension 3 and 5 are commented in relation with the proven assertions.

In [2], the author continues the study of Ricci-like solitons on Sasaki-like almost contact B-
metric manifolds. Cases are considered in which the potential of the Ricci-like soliton is ξ or
pointwise collinear to it, i.e. vertical. In the former case, the properties for a parallel or recurrent
Ricci tensor are studied. In the latter case, it is shown that the potential of the considered Ricci-
like soliton has a constant length and the manifold is η-Einstein. Other curvature conditions are
also found, which imply that the main metric is Einstein. After that, some results are obtained
for a parallel symmetric second-order covariant tensor on the manifolds under study. Finally,
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an explicit example of dimension 5 is given and some of the results are illustrated.
In the present work, the author explores Ricci-like solitons with arbitrary potential on Sasaki-

like almost contact B-metric manifolds. The soliton under study is characterized and proved
that its Ricci tensor is equal to the vertical component of both B-metrics g and g̃ multiplied by
a constant. Thus, the scalar curvatures with respect to both B-metrics are equal and constant.
In the 3-dimensional case, it is found that the special sectional curvatures with respect to the
structure are constant. Gradient almost Ricci-like solitons on Sasaki-like almost contact B-metric
manifolds are proved to have constant soliton coefficients. Explicit examples are provided of Lie
groups as manifolds of dimensions 3 and 5 equipped with the structures under study.
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On Osserman and two-root manifolds
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The local isometries of a locally two-point homogeneous spaces act transitively on the sphere
bundle of unit tangent vectors, and therefore fix the characteristic polynomial of the Jacobi
operator there. In this way we get a generalization of locally two-point homogeneous Riemannian
manifolds, called the (globally) Osserman manifolds, in which the characteristic polynomial of a
Jacobi operator JX is independent of X from the unit tangent bundle. The question of whether
the converse is true (every Osserman manifold is locally two-point homogeneous) is known as
the Osserman conjecture. Nikolayevsky established the affirmative answer in all cases, except
the manifolds of dimension 16 whose reduced Jacobi operator has an eigenvalue of multiplicity
7 or 8.

We introduce k-root manifolds in which the reduced Jacobi operator has exactly k eigenvalues.
We investigate one-root and two-root manifolds as another generalization of locally two-point
homogeneous spaces. It is well known that a connected one-root Riemannian manifold is a space
of constant sectional curvature. We present the following recent results from [1]. There is no
two-root Riemannian manifold of odd dimension. There are no connected two-root Riemannian
manifolds of twice an odd dimension other than those that are globally Osserman.
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Generalized quasi-Einstein normal metric contact pairs
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A normal metric contact pair manifold M , is a (2p+2q+2)-dimensional differentiable manifold
with two 1-forms α1, α2 and a metric almost contact structure which is normal. M is called a
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generalized quasi-Einstein manifold if we have

Ric(X1, X2) = λg(X1, X2) + βα1(X1)α1(X2) + µα2(X1)α2(X2)

for functions λ, β, µ on M and all X1, X2 ∈ Γ(TM). In this talk, we present some properties
of generalized quasi-Einstein normal metric contact pair manifolds. In addition, we examine
normal metric contact pair manifolds which is a space of generalized quasi-constant curvature.
Also, we give some results with certain curvature conditions.

References

[1] Bande, G., Hadjar, A. Contact pairs. Tohoku Mathematical Journal 2005; Second Series:57(2): 247-260.
doi:10.2748/tmj/1119888338

[2] Bande, G., Hadjar, A. Contact pair structures and associated metrics. Differential Geometry - Proceedings
of the V III International Colloquium 2009; (pp. 266-275).

[3] Bande, G., Hadjar, A. On normal contact pairs. International Journal of Mathematics 2010; 21(06): 737-754.
doi: 10.1142/S0129167X10006197

[4] Bande, G., and Blair, D. E. Symmetry in the geometry of metric contact pairs. Mathematische Nachrichten
2013; 286(17-18): 1701-1709. doi:10.1002/mana.201100300

[5] Bande, G., Blair, D. E., Hadjar, A. Bochner and conformal flatness of normal metric contact pairs. Annals
of Global Analysis and Geometry 2015; 48(1): 47-56. doi:10.1007/s10455-015-9456-2

[6] Blair, D. E., Ludden, G. D., and Yano, K. Geometry of complex manifolds similar to the Calabi-Eckmann
manifolds. Journal of Differential Geometry 1974; 9(2),: 263-274.

[7] Chaki, M.C.: On Generalized quasi-Einstein manifold. Publ. Math. Debrecen 2001; 58: 638691
[8] Chen, B. Y., and Yano, K. Hypersurfaces of a conformally flat space. Tensor (NS) 1972; 26: 318-322.
[9] De, U.C., Ghosh, G.C. On quasi Einstein manifolds. Periodica Mathematica Hungarica 48, 223231 (2004)

https://doi.org/10.1023/B:MAHU.0000038977.94711.ab
[10] De, U. C., and Ghosh, G. C. On generalized quasi Einstein manifolds. Kyungpook mathematical journal

2004; 44(4): 607-607.
[11] De, U. C., and Mallick, S. On the existence of generalized quasi-Einstein manifolds. Arch. Math.(Brno) 2011;

47(4): 279-291.
[12] De, U. C., and Shenawy, S. Generalized quasi-Einstein GRW space-times. International Journal of Geometric

Methods in Modern Physics 2019; 16(08): 1950124. doi: 10.1142/S021988781950124X
[13] Mallick, S., and De, U. C. On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity.

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 2016; 55(2): 111-127.
[14] Pokhariyal, G. P. and Mishra, R. S. Curvature tensors and their relativistics significance, Yokohama Mathe-

matical Journal 1970; vol. 18: pp. 105108.
[15] Prakasha, D. G., Fernandez, L. M., and Mirji, K. The M-projective curvature tensor field on generalized

(κ, µ)-paracontact metric manifolds. Georgian Mathematical Journal 2020; 27(1): 141-147. doi:10.1515/gmj-
2017-0054.
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Certain submanifolds of spheres
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On this occasion we will present several results about (contact) CR-submanifolds of six and
seven-dimensional spheres. There is a nearly Kähler almost complex structure J on the six-
dimensional unit sphere, defined by the multiplication of Cayley numbers. A submanifold of a
manifold with an almost complex structure is CR, if it has a holomorphic distribution such that
its orthogonal complement in the tangent space is a totally real distribution. On the other hand,
as the seven-dimensional unit sphere has the remarkable property of being a Sasakian manifold,
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with the almost contact metric structure (ϕ, ξ, η, g), we study its contact CR-submanifolds,
namely those that carry a ϕ-invariant distribution such that its orthogonal complement in the
tangent space is ϕ-anti-invariant.
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Invariants on locally conformal Kähler manifolds
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We define a locally conformal Kähler Riemannian invariant δk and establish an inequality
involving this invariant. We also characterize the equality case.

A geometric interpretation of some relations between integer sequences
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In this talk, I will present a geometric interpretation of a relation between two well-known
integer sequences. New research ideas will be given.
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At the age of 21 Gabriel Lamé (1795-1860) published a small booklet on geometrical methods
[1]. In particular, to apply geometry to crystallography, he introduced supercircles and superel-
lipses, a subset of what are now known as Lamé curves. In the second half of the 20th century
these were applied in architecture and design, but only round 1993 the aspect of natural shapes
was taken up with the application of these curves to model cross section of culms of square bam-
boos. A generalization of Lamé curves to Gielis curves enlarges the scope of a unified geometric
description to many more natural shapes. In the past five years superellipses have been used
extensively to model bamboo meristems, culms and leaves, annual rings and torsion in trees,
and on leaves of various other plants [2]. Over 40000 different specimens were studied and in
general, two numbers, one for shape and one for dimension, suffice for accurate description and
determination of area. Indeed, in vegetative leaves it is the area which is main determinant
for how much photosynthetic activity can be performed and the contribution of leaves to total
biomass of plants. These results led to very simple and accurate methods of area measurement
for leaves by demonstrating the large-scale validity of the Montgomery equation, to estimate
biomass in leaves. From a geometrical perspective, if one focusses on area instead of form and
shape, all leaves can be considered as variations on a single theme: the elliptic leaf, elongated
or not. Most recently, the original hypothesis has been validated on 750 sections of the square
bamboo Chimonobambusa utilis [3]. A total of 1400 inner and outer shapes were tested. One
result was that both super- and subellipses could be distinguished. Another result is that a
single deformation parameter suffices to describe deformations of the cross section along the
height, due to internal and external forces acting during growth and development, which will
allow a better understanding of the relationship between form and function.
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Harmonic metrics, harmonic tensors and identity maps
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The notions of harmonic metrics, harmonic tensors were introduced by B.-Y. Chen and T.
Nagano in 1984. Since then, harmonic metrics and harmonic tensors have been studied by
various authors and many interesting results were obtained.

In this talk I will present a survey on harmonic metrics and harmonic tensors from various
geometric and physical points of view.


